The Quadratic Eigenvalue Problem
نویسندگان
چکیده
We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملElliptic and hyperbolic quadratic eigenvalue problems and associated distance problems
Two important classes of quadratic eigenvalue problems are composed of elliptic and hyperbolic problems. In [Linear Algebra Appl., 351–352 (2002) 455], the distance to the nearest non-hyperbolic or non-elliptic quadratic eigenvalue problem is obtained using a global minimization problem. This paper proposes explicit formulas to compute these distances and the optimal perturbations. The problem ...
متن کاملRegularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers
This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total...
متن کاملA semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems
In this paper, we are concerned with the computation of a few eigenpairs with smallest eigenvalues in absolute value of quadratic eigenvalue problems. We first develop a semiorthogonal generalized Arnoldi method where the name comes from the application of a pseudo inner product in the construction of a generalized Arnoldi reduction [25] for a generalized eigenvalue problem. The method applies ...
متن کاملOn the quadratic two-parameter eigenvalue problem and its linearization ?
We introduce the quadratic two-parameter eigenvalue problem and linearize it as a singular two-parameter eigenvalue problem. This, together with an example from model updating, shows the need for numerical methods for singular two-parameter eigenvalue problems and for a better understanding of such problems. There are various numerical methods for two-parameter eigenvalue problems, but only few...
متن کاملLocking and Restarting Quadratic Eigenvalue Solvers
This paper studies the solution of quadratic eigenvalue problems by the quadratic residual iteration method. The focus is on applications arising from nite-element simulations in acoustics. One approach is the shift-invert Arnoldi method applied to the linearized problem. When more than one eigenvalue is wanted, it is advisable to use locking or de-ation of converged eigenvectors (or Schur vect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 43 شماره
صفحات -
تاریخ انتشار 2001